Search results for " unbaffled vessel"

showing 3 items of 3 documents

Free-surface shape in unbaffled stirred vessels: Experimental study via digital image analysis

2013

There is a growing interest in using unbaffled stirred tanks for addressing a number of processing needs such as low shear damage (sensitive biocultures), low attrition (solid–liquid applications), deep-cleaning/sterilization (pharmaceutical applications). The main feature of uncovered, unbaffled stirred tanks is highly swirling motion of the fluid that results in a deformation of the free liquid surface. At sufficiently high agitation speeds the resulting whirlpool reaches the impeller and gives rise to a gas–liquid dispersion, so leading to the formation of a dispersion without the use of gas-sparger; the so-called self-inducing operation of the vessel. In this work, digital image analysi…

Engineeringbusiness.industryApplied MathematicsGeneral Chemical EngineeringMixing Unbaffled vessels Image analysis Free-surfaceshapeSettore ING-IND/25 - Impianti ChimiciMIXINGGeneral ChemistryMechanicsStructural engineeringFree-surface shapeShadowgraphyTurbineSlip factorMixing; Unbaed Vessels; Image Analysis; free-surface shape.Industrial and Manufacturing EngineeringAgitatorRushton turbineImpellerFree surfaceDigital image analysisUNBAFFLED STIRRED VESSELSIMAGE ANALYSISbusinessUnbaed Vessels
researchProduct

CFD simulations of early- to fully-turbulent conditions in unbaffled and baffled vessels stirred by a Rushton turbine

2021

Abstract Laboratory scale unbaffled tanks provided with a top cover and a baffled tank both stirred by a Rushton turbine were simulated by carrying out RANS simulations. Three different turbulence models were adopted (k- ω SST, k- e and the SSG Reynolds stress model) to predict the flow field and the relevant performance parameters (power and pumping numbers) of the tank operated from early to fully turbulent conditions. CFD results were compared with literature experimental data and DNS simulation results to validate and properly compare the models. In the range of Reynolds numbers investigated, results showed that, for the unbaffled tank, the SSG model based on Reynolds stresses is a bett…

Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi Chimicibusiness.industryTurbulenceGeneral Chemical EngineeringSettore ING-IND/25 - Impianti ChimiciReynolds number02 engineering and technologyGeneral ChemistryReynolds stressMechanicsComputational fluid dynamicsLaboratory scale021001 nanoscience & nanotechnologyFlow fieldRushton turbinesymbols.namesake020401 chemical engineeringCFD SSG Stirred tank Turbulence model Unbaffled vesselsymbols0204 chemical engineering0210 nano-technologybusinessReynolds-averaged Navier–Stokes equationsSettore ING-IND/19 - Impianti NucleariMathematics
researchProduct

Solid–Liquid Suspensions in Top-Covered Unbaffled Vessels: Influence of Particle Size, Liquid Viscosity, Impeller Size, and Clearance

2014

Particle suspension in liquids is a unit operation commonly encountered in the process industry. Although it is usually carried out in baffled stirred tanks, there are some specific applications where the presence of baffles may be undesirable. In the present work solid-liquid suspensions are investigated in a radially stirred unbaffled tank provided with a top cover. The minimum impeller speed at which all solid particles get suspended (Njs) and the relevant power requirements (Pjs) are assessed. The dependence of these two parameters on physical properties (liquid viscosity, particle concentration, and size) and system geometrical configurations (impeller diameter and clearance) is invest…

Work (thermodynamics)Settore ING-IND/26 - Teoria Dello Sviluppo Dei Processi ChimiciMaterials scienceChromatographyGeneral Chemical EngineeringSettore ING-IND/25 - Impianti ChimiciLiquid viscosityBaffleGeneral ChemistryMechanicsUnit operationSOLID-LIQUID SUSPENSIONIndustrial and Manufacturing EngineeringImpellerSOLID-LIQUID MIXINGParticlesolid liquid suspension stirred tank Njs unbaffled vessel complete suspension power requirementsParticle sizeUNBAFFLED STIRRED VESSELSSolid liquid
researchProduct